a2 United States Patent

Szabo et al.

US009338095B2

US 9,338,095 B2
May 10, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)
")

@
(22)
(65)

(60)

(1)

(52)

(58)

DATA FLOW SEGMENT OPTIMIZED FOR
HOT FLOWS

Applicant: F5 NETWORKS, INC., Seattle, WA
us)

Paul Imre Szabo, Shoreline, WA (US);
Peter Michael Thornewell, Seattle, WA
(US); Timothy Scott Michels,
Greenacres, WA (US)

F5 Networks, Inc., Seattle, WA (US)

Inventors:

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 304 days.
Appl. No.: 13/802,254

Filed: Mar. 13,2013
Prior Publication Data
US 2013/0294239 Al Nov. 7, 2013

Related U.S. Application Data

Provisional application No. 61/641,251, filed on May
1,2012.

Int. Cl1.

HO4L 12726 (2006.01)

HO4L 12/801 (2013.01)

HO4L 12/721 (2013.01)

HO4L 12/715 (2013.01)

HO4L 29/08 (2006.01)

U.S. CL

CPC ... HO4L 47/10 (2013.01); HO4L 45/38

(2013.01); HO4L 45/64 (2013.01); HO4L 47/12
(2013.01); HO4L 67/1002 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS
3,950,735 A

4,644,532 A
4,965,772 A

4/1976 Patel
2/1987 George et al.
10/1990 Daniel et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0744850 A2 11/1996
WO 91/14326 A2 9/1991

(Continued)
OTHER PUBLICATIONS

Office Communication for U.S. Appl. No. 13/802,169 mailed on Oct.
9,2004.

(Continued)

Primary Examiner — Jutai Kao

(74) Attorney, Agent, or Firm — John W. Branch; Lowe
Graham Jones PLLC

57 ABSTRACT

Embodiments are directed towards improving the perfor-
mance of network traffic management devices by optimizing
the management of hot connection flows. A packet traffic
management device (“PTMD”) may employ a data flow seg-
ment (“DFS”) and control segment (“CS”). The CS may
perform high-level control functions and per-flow policy
enforcement for connection flows maintained at the DFS,
while the DFS may perform statistics gathering, per-packet
policy enforcement (e.g., packet address translations), or the
like, on connection flows maintained at the DFS. The DFS
may include high-speed flow caches and other high-speed
components that may be comprised of high-performance
computer memory. Making efficient use of the high speed
flow cache capacity may be improved by maximizing the
number of hot connection flows and minimizing the number
of'malicious and/or in-operative connections flows (e.g., non-
genuine flows) that may have flow control data stored in the
high-speed flow cache.

21 Claims, 12 Drawing Sheets

/—400A

403

402
\/W CLIENT.1

LN ‘ CLIENT_M l

04
-
‘ 406

\
-

PACKET TRAFFIC |
MANAGEMENT DEVICE |

408
—

DATA FLOW
SEGMENT

\. CONTROL
i SEGMENT

!
411/_\T SERVER_1 .

a1
.o SERVER_N
[

US 9,338,095 B2
Page 2

(56)

5,023,826
5,053,953
5,299,312
5,327,529
5,367,635
5,371,852
5,406,502
5,475,857
5,517,617
5,519,694
5,519,778
5,521,591
5,528,701
5,581,764
5,596,742
5,606,665
5,611,049
5,663,018
5,752,023
5,761,484
5,768,423
5,774,660
5,790,554
5,802,052
5,875,296
5,892,914
5,892,932
5,919,247
5,936,939
5,946,690
5,949,885
5,951,694
5,959,990
5,974,460
5,983,281
6,006,260
6,006,264
6,026,452
6,028,857
6,051,169
6,078,956
6,085,234
6,092,196
6,108,703
6,111,876
6,178,423
6,182,139
6,192,051
6,246,684
6,253,230
6,263,368
6,278,995
6,327,622
6,374,300
6,396,833
6,601,084
6,636,894
6,650,641
6,742,045
6,751,663
6,754,228
6,760,775
6,772,219
6,779,039
6,781,986
6,798,777
6,868,082
6,876,629
6,876,654
6,888,836
7,343,413
7,561,517
8,024,483
2001/0037387

U.S. PATENT DOCUMENTS

D e e D 0 e 0 B B B 0 0 e B 0 0 D D B 0 0 0 D B 0 D D 0 B 0 B D e B

References Cited

6/1991
10/1991
3/1994
7/1994
11/1994
12/1994
4/1995
12/1995
5/1996
5/1996
5/1996
5/1996
6/1996
12/1996
1/1997
2/1997
3/1997
9/1997
5/1998
6/1998
6/1998
6/1998
8/1998
9/1998
2/1999
4/1999
4/1999
7/1999
8/1999
8/1999
9/1999
9/1999
9/1999
10/1999
11/1999
12/1999
12/1999
2/2000
2/2000
4/2000
6/2000
7/2000
7/2000
8/2000
8/2000
1/2001
1/2001
2/2001
6/2001
6/2001
7/2001
8/2001
12/2001
4/2002
5/2002
7/2003
10/2003
11/2003
5/2004
6/2004
6/2004
7/2004
8/2004
8/2004
8/2004
9/2004
3/2005
4/2005
4/2005
5/2005
3/2008
7/2009
9/2011
11/2001

Patel

Patel

Rocco, Jr.
Fults et al.
Bauer et al.
Attanasio et al.
Haramaty et al.
Dally

Sathaye et al.
Brewer et al.
Leighton et al.
Arora et al.
Aref
Fitzgerald et al.
Agarwal et al.
Yang et al.
Pitts
Cummings et al.
Chougcri et al.
Agarwal et al.
Arefet al.
Brendel et al.
Pitcher et al.
Venkataraman
Shi et al.

Pitts

Kim

Van Hoff et al.

Des Jardins et al.

Pitts

Leighton
Choquier et al.
Frantz et al.

Maddalozzo, Ir. et al.

Ogle et al.
Barrick, Jr. et al.
Colby et al.
Pitts

Poor

Brown et al.
Bryant et al.
Pitts et al.
Reiche
Leighton et al.
Frantz et al.
Douceur et al.
Brendel
Lipman et al.
Chapman et al.
Couland et al.
Martin
Hawkinson
Jindal et al.
Masters

Zhang et al.
Bhaskaran et al.
Short et al.
Albert et al.
Jordan et al.
Farrell et al.
Ludwig
Anerousis et al.
Shobatake

Bommareddy et al.

Sabaa et al.
Ferguson et al.
Allen, Ir. et al.
Beshai et al.
Hegde
Cherkasova
Gilde et al.
Klinker et al.
Rothstein et al.
Gilde et al.

2002/0138618 Al 9/2002 Szabo

2004/0039820 Al 2/2004 Colby et al.

2004/0049596 Al 3/2004 Schuehler et al.

2004/0111635 Al 6/2004 Boivie et al.

2006/0095673 Al 5/2006 Van Doren et al.

2008/0162390 Al 7/2008 Kapoor et al.

2008/0181226 Al 7/2008 Varier et al.

2008/0256239 Al 10/2008 Gilde et al.

2009/0003204 Al 1/2009 Okholm et al.

2009/0106426 Al 4/2009 Chen et al.

2009/0209262 Al 8/2009 Stamoulis et al.

2009/0327514 Al* 12/2009 Foschiano etal. 709/233
2010/0121972 Al 5/2010 Samuels et al.

2010/0315992 Al 12/2010 Turanyi

2011/0075675 Al* 3/2011 Koodlietal. ... 370/401
2011/0179183 Al 7/2011 Lindsay

2012/0320788 Al 12/2012 Venkataramanan et al.
2013/0044741 Al 2/2013 Lappetelainen et al.
2013/0083661 Al* 4/2013 Guptaetal. 370/235
2014/0036661 Al 2/2014 Campbell

FOREIGN PATENT DOCUMENTS

WO 95/05712 A2 2/1995
WO 97/09805 Al 3/1997
WO 97/45800 Al 12/1997
WO 99/05829 Al 2/1999
WO 99/06913 Al 2/1999
WO 99/10858 A2 3/1999
WO 99/39373 A2 8/1999
WO 99/64967 Al 12/1999
WO 00/04422 A2 1/2000
WO 00/04458 Al 1/2000
OTHER PUBLICATIONS

Office Communication for U.S. Appl. No. 13/461,675 mailed on
Aug. 14, 2014.

Office Communication for U.S. Appl. No. 13/772,194 mailed on Jul.
25,2014.

FIPS 197, Advanced Encryption Standard (AES), Nov. 26, 2001,
NIST, all pages.

Official Communication for U.S. Appl. No. 13/461,675 mailed Jan.
27,2014.

Office Communication for U.S. Appl. No. 13/772,194 mailed on Jan.
26, 2015 (21 pages).

Office Communication for U.S. Appl. No. 13/772,194 mailed on Apr.
15, 2015 (9 pages).

Office Communication for U.S. Appl. No. 13/802,169 mailed on Feb.
5, 2015 (10 pages).

“A Process for Selective Routing of Servlet Content to Transcoding
Modules,” Research Disclosure 422124, IBM Corporation, pp. 889-
890, Jun. 1999.

“Servlet/Applet/HTML Authentication Process With Single Sign-
On,” Research Disclosure 429128, IBM Corporation, pp. 163-164,
Jan. 2000.

“Transmission Control Protocol,” Wikipedia, the free encyclopedia,
http://en.wikipedia.org/wiki/Transmission_ Control_ Protocol, pp.
1-18, last accessed Aug. 1, 2012.

International Search Report and Written Opinion for International
Patent Application No. PCT/US2013/038168 mailed Aug. 14, 2013.
Office Communication for U.S. Appl. No. 13/802,169 mailed on May
27,2015.

Office Communication for U.S. Appl. No. 13/802,331 mailed on Jun.
5,2015.

Office Communication for U.S. Appl. No. 13/772,194 mailed on Jul.
28, 2015 (7 pages).

Office Communication for U.S. Appl. No. 13/461,675 mailed on
Now. 5, 2015 (37 pages).

FS Networks, Inc., “TMOS Management Guide for BIG-IP Sys-
tems,” https://support.f5.com/kb/en-us/products/big-ip__ltm/manu-
als/product/tmos_ management_ guide 10__1.html, publication
date Jan. 20, 2011, accessed on Dec. 14, 2015 (520 pages).

* cited by examiner

U.S. Patent May 10, 2016 Sheet 1 of 12 US 9,338,095 B2

103 104

Q/ CLIENT DEVICE

CLIENT DEVICE

CLIENT DEVICE

107

WIDE AREA
NETWORK/LOCAL
AREA NETWORK -
(NETWORK)

108

109
PACKET TRAFFIC f

MANAGEMENT
DEVICE

111
110

ol -

SERVER DEVICE_1 SERVER DEVICE_N

FIG. 1

U.S. Patent May 10, 2016 Sheet 2 of 12 US 9,338,095 B2

/'—' 200

CLIENT DEVICE

202
2/ processor 234
204
| () 236
— 1 I |~
RAM NETWORK
POWER
INTERFACE(S) >
OPERATING |} \2/05 SUPPLY ©
SYSTEM 238
N 208 | aupro | -
DATA STORAGE 228 INTERFACE | .
240
| DISPLAY | N
PROCESSOR 200 "
STORAGE »
214 DEVICE
APPLICATIONS |L|) TNBUL 248
(\J
BROWSER T\ %% 20 IJ\?TLY_{:?;%E - -
226
222
ROM I\
BIos [
MEMORY

FIG. 2

U.S. Patent May 10, 2016 Sheet 3 of 12 US 9,338,095 B2

-

_tanonag=
NETWORK DEVICE
P 302 326
304 ROCESSOR oV
a— 328
RAM - 330
e OPERATING PROCESSOR r‘>
306 ™~ SYSTEM READABLE
308 71 STORAGE NETWORK
N DEVICE N
DATA STORAGE INTERFACE(S)[* ™
332 334
314 7T\ INPUT/ HARD DISK
N\l APPLICATIONS ourpur DRIVE
P INTERFACE(S)
3167 NI WEBSERVER y
yam
318 N CONTROL 336 338
i SEGMENT (3
VIDEO
DISPLAY
ADAPTER DATA FLOW
‘ SEGMENT
ROM \522
B L]
10S \3/2 y

U.S. Patent May 10, 2016 Sheet 4 of 12 US 9,338,095 B2

‘ A
403
w '
~"N cuLENT1 e oo CLIENT M
4"&7
PACKET TRAFFIC
MANAGEMENT DEVICE

406 408

RN

41 2/\ SERVER_1 o oo SERVER_N

FIG. 4A

U.S. Patent May 10, 2016 Sheet 5 of 12

402

N CLIENT 1

404

403

Lw

US 9,338,095 B2

/—“4003

CLIENT M I

40\/\

6
{ DATA FLOW

SEGMENT _1

[DATA FLOW

SEGMENT_L

™~

.

PACKET TRAFFIC
MANAGEMENT DEVICE

CONTROL 108
SEGMENT_1

~
CONTROL 409
SEGMENT_K

4m SERVER_1 o o

FIG. 4B

411

>

SERVER_N

US 9,338,095 B2

Sheet 6 of 12

May 10, 2016

U.S. Patent

Server

CSs

DES

Client

506

512

ACK

520

514

FIG. 5

U.S. Patent

May 10, 2016 Sheet 7 of 12 US 9,338,095 B2
/—“ 600
(Start ’
v
» Receive network packet N
602
606

604

Forward network

packet to CS
612
608 Buffer
control data network »

quailablg packet

Forward network packet
610"\ based on flow control

data stored in flow cache

Yes More

network
packets

614

FIG. 6

U.S. Patent May 10, 2016 Sheet 8 of 12 US 9,338,095 B2

Receive new flow
702" control data from CS

706

Remove flow control
data for another flow
from DFS flow cache and
send EVICT message to
CS

704

A 4

Insert new flow control
708" data into flow cache

A 4

Process received packets

710\ based on flow control
data stored in flow cache

A 4

(Return)

FIG. 7

U.S. Patent May 10, 2016 Sheet 9 of 12 US 9,338,095 B2

/—‘ 800

(Start)

A4

Receive EVICT message
from DFS 02

Y

g806

Discard flow and flow
control data

804 Yes

Is flow closed?

Transfer evicted flow to CS

and continue processing |/ gog
network packets for the flow

”i
-«

Yes

More EVICT
messages?

FIG. 8

U.S. Patent May 10, 2016 Sheet 10 of 12 US 9,338,095 B2

900
{ Start)

\ 4

A 4

Receive network packet | /" gpp

[
I Recetve flow status update from DPS}/\ 904
s

| for connection flow(s)

4

Update connection flow
metrics " 906

Y
employ flow metrics and apply
rules to identify hot N 908
connection flows

912

ows identified fo
moving?

Send messages/commands to

910 CS/DFS to move flows

914

FIG. 9

U.S. Patent

May 10, 2016 Sheet 11 of 12

Number

Yes of active flows on

DFS less than
capacity
No

Sort connection flows

total data traffic over a
given time interval

Y

Determine hot flow candidates
based on the top N flows
based on the rank order

US 9,338,095 B2

in rank order based on /\1004

1006

[
P

A 4

(Return '

FIG. 10

U.S. Patent

May 10, 2016 Sheet 12 of 12 US 9,338,095 B2

Number
of active flows on

Yes

DFS less than
capacity

Determine median bit-rate of flows
processed by the CS and predict maximum /\1104
number of flows the CS can process

A

Determine hot flow candidates
based on the top N-tile of
flows based on the number of |_" M106
flows the CS is expected to
handle

f

h 4

(Return ’

FIG. 11

US 9,338,095 B2

1
DATA FLOW SEGMENT OPTIMIZED FOR
HOT FLOWS

RELATED APPLICATIONS

This application is a Utility Patent application based on a
previously filed U.S. Provisional Patent application, U.S. Ser.
No. 61/641,251 filed on May 1, 2012, the benefit of the filing
date of which is hereby claimed under 35 U.S.C. §119(e).

TECHNICAL FIELD

The present invention relates generally to packet traffic
management and, more particularly, but not exclusively to
determining if network connection flow control data should
be off-loaded to data flow segment stored in a high-speed
cache.

BACKGROUND

The expanded use of the Internet has increased communi-
cation connections between client devices and server devices.
Often, a client device establishes a network connection with a
server device by using well-known protocols, such as Trans-
mission Control Protocol/Internet Protocol (““TCP/IP”), User
Datagram Protocol (“UDP”), and the like. This network con-
nection may be identified by one characteristic or a combi-
nation of characteristics, such as a source port, a destination
port, a source address, a destination address, a protocol, and
the like. Typically, the source address, destination address,
destination port, and protocol are relatively fixed for a net-
work connection between a client device and a server device.
Thus, the source port may be utilized to uniquely identify a
connection between the client device and the server device.
Additionally, the expansion of the Internet has led to improve-
ments in packet traffic management. One such advancement
is to split operations between a control segment and a data
flow segment as described in more detail in U.S. Pat. No.
7,343,413, filed Mar. 21, 2001, and entitled “Method and
System for Optimizing a Network by Independently Scaling
Control Segments and Data Flow,” which is hereby incorpo-
rated by reference in its entirety into this patent application.
Thus, it is with respect to these considerations and others that
the invention has been made.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments of the
present invention are described with reference to the follow-
ing drawings. In the drawings, like reference numerals refer
to like parts throughout the various figures unless otherwise
specified. For a better understanding of the present invention,
reference will be made to the following Detailed Description,
which is to be read in association with the accompanying
drawings, wherein:

FIG. 1 is a system diagram of an environment in which
embodiments of the invention may be implemented;

FIG. 2 shows an embodiment of a client device that may be
included in a system such as that shown in FIG. 1;

FIG. 3 shows an embodiment of a network device that may
be included in a system such as that shown in FIG. 1;

FIG. 4A and 4B illustrate overview system diagrams gen-
erally showing embodiments of a packet traffic management
device disposed between client devices and server devices in
accordance with the embodiments;

FIG. 5 illustrates a sequence diagram generally showing
one embodiment of a sequence for terminating a connection

10

15

20

25

30

35

40

45

50

55

60

65

2

flow at a data flow segment and establishing a new connection
flow at the data flow segment in accordance with the embodi-
ments;

FIG. 6 shows a flowchart showing a process for packet
traffic management in accordance with at least one of the
various embodiments;

FIG. 7 shows a flowchart of a process for handling new
connection flows at a data flow segment in accordance with at
least one of the various embodiments;

FIG. 8 shows a flowchart of a process for handling eviction
messages at a control segment in accordance with at least one
of the various embodiments;

FIG. 9 shows a flowchart of a process for determining if
connection flows may be candidates for off-loading to the
data flow segment in accordance with at least one of the
various embodiments; and

FIGS. 10 and 11 show flowcharts of processes for identi-
fying hot connection flows in accordance with at least one of
the various embodiments.

DETAILED DESCRIPTION

Throughout the specification and claims, the following
terms take the meanings explicitly associated herein, unless
the context clearly dictates otherwise. The phrase “in one
embodiment” as used herein does not necessarily refer to the
same embodiment, though it may. Furthermore, the phrase
“in another embodiment” as used herein does not necessarily
refer to a different embodiment, although it may. Thus, as
described below, various embodiments of the invention may
be readily combined, without departing from the scope or
spirit of the invention.

In addition, as used herein, the term “or” is an inclusive
“or” operator, and is equivalent to the term “and/or,” unless
the context clearly dictates otherwise. The term “based on” is
not exclusive and allows for being based on additional factors
not described, unless the context clearly dictates otherwise. In
addition, throughout the specification, the meaning of “a,”
“an,” and “the” include plural references. The meaning of
“in” includes “in” and “on.”

As used herein, the term “SYN” refers to a packet trans-
mitted utilizing TCP that includes a set synchronize control
flag in a TCP header of the packet.

As used herein, the term “ACK” refers to a packet trans-
mitted utilizing TCP that includes a set acknowledgment flag
in a TCP header of the packet.

As used herein, the term “SYN_ACK” refers to a packet
transmitted utilizing TCP that includes a set synchronize
control flag and a set acknowledgment flag in a TCP header of
the packet.

As used herein, the term “FIN” refers to a packet transmit-
ted utilizing TCP that includes a set no more data from sender
flag in a TCP header of the packet.

As used herein, the term “FIN_ACK” refers to a packet
transmitted utilizing TCP that includes a set no more data
from sender flag and a set acknowledgment flag in a TCP
header of the packet. FIN_ACK compress a FIN and ACK
into one TCP packet.

Asusedherein, the term “tuple” refers to a set of values that
identify a source and destination of a connection. In one
embodiment, a 5 tuple may include a source address, a des-
tination address, a source port, a destination port, and a pro-
tocol identifier. In at least one of the various embodiments,
tuples may be used to identify network flows (e.g., connection
flows).

As used herein, the terms “network flow,” “connection
flow,”, “flow” refer to a network session that may be estab-

2 <

US 9,338,095 B2

3

lished between two endpoints. In at least one of the various
embodiments, a tuple may describe the flow. In at least one of
the various embodiments, flow control data associated with
connection flows may be used to ensure that the network
packets sent between the endpoints of a connection flow may
be routed along the same path. In at least one of the various
embodiments, the performance of connection oriented net-
work protocols such as TCP/IP may impaired if network
packets may be routed using varying paths and/or directed
different endpoints.

As used herein, the term “genuine connection flow,” refers
to a connection flow that may have been determined to be
associated with an operative client-server communication
session. In contrast, a non-genuine connection flow may be
associated with a malicious attack suchas a SYN flood attack.
In at least one of the various embodiments, characteristics a
genuine connection flows may include, TCP/IP handshaking
complete, evidence of bi-directional network packet
exchange, or the like. Likewise, evidence that a connection
flow may be non-genuine may include, half-open connections
(incomplete handshaking and connection setup), few if any
network packets exchanged, or the like.

As used herein, the term “hot connection flow,” refers to a
connection flow that may have been determined to be a can-
didate for off loading to a data flow segment. Hot flow con-
nections may have characteristics such high-bandwidth utili-
zation, quality of service priority, or the like.

As used herein, the term “high speed flow cache” refers to
memory based cache used for storing flow control data that
corresponds to connection flows. The cache may be acces-
sible using, dedicated busses that may provide very fast per-
formance based on a combination of factors that may include,
wide-busses, fast clock speeds, dedicated channels, special-
ized read and/or write buffer, hardware proximity, tempera-
ture control, or the like. Also, the high speed flow cache may
be comprised of very fast random access memory (RAM)
components such as, static random access memory (SRAM),
asynchronous SRAM, burst SRAM, extended data output
dynamic RAM (EDO

DRAM), or the like. In most cases, the high performance
components comprising the high speed flow cache often are
relatively expensive. Thus, the high speed flow cache may
comprise valuable “real estate” within a traffic management
device.

The following briefly describes the various embodiments
to provide a basic understanding of some aspects of the inven-
tion. This brief description is not intended as an extensive
overview. It is not intended to identify key or critical ele-
ments, or to delineate or otherwise narrow the scope. Its
purpose is merely to present some concepts in a simplified
faun as a prelude to the more detailed description that is
presented later.

Briefly stated, embodiments are directed towards improv-
ing the performance of network traffic management devices
by optimizing the management of hot connection flows. In at
least one of the various embodiments, a packet traffic man-
agement device (“PTMD”) may employ a data flow segment
(“DFS”) component and control segment (“CS”) component.
In at least one of the various embodiments, the CS may
perform high-level control functions and per-flow policy
enforcement for connection flows maintained at the DFS ,
while the DFS may perform statistics gathering, per-packet
policy enforcement (e.g., packet address translations), or the
like, on connection flows maintained at the DFS.

The CS may be utilized to generate flow control data for
connection flows that may be offloaded to the DFS based on
connection flow requests received at the packet traffic man-

10

15

20

25

30

35

40

45

50

55

60

65

4

agement device. In one embodiment, the CS may receive a
new connection flow request, such as a SYN packet, sent by a
client device. The CS may generate and cache a connection
flow identifier for the connection flow request. In at least one
of'the various embodiments, the DFS may include high-speed
flow caches and other high-speed components. In at least one
of the various embodiments, the high-speed flow cache may
be enabled to store a defined amount of flow control data that
may limit the number of connection flows that may be off-
loaded to the DFS for handling. In at least one of the various
embodiments, making efficient use of the high speed flow
cache capacity may be improved by maximizing the number
ot hot connection flows and minimizing the number of mali-
cious and/or in-operative connections flows (e.g., non-genu-
ine flows) that may be have flow control data stored in the
high-speed flow cache.

In at least one of the various embodiments, if a new net-
work connection flow may be received it may be forwarded to
a control segment (CS). In at least one of the various embodi-
ments, the CS may generate the flow control data for the new
network connection flow. In one embodiment, if the CS deter-
mines that the new network connection flow should be off-
loaded to the DFS, the CS may send a control message that
may include the flow control data to the DFS. In at least one
of the various embodiments, the DFS may store the received
flow control data in the high-speed flow cache that may cor-
respond to the DFS.

In at least one of the various embodiments, the CS may
receive connection flows that may be evicted from the DFS. In
at least one of the various embodiments, if the evicted con-
nection may remain valid and/or active the CS may begin
handling the network packets for the transferred connection
flow (e.g., the CS may take over the packet level control in
addition to providing the flow level control and policy
enforcement).

In at least one of the various embodiments, in conjunction
with managing the connection flows the CS may analyze flow
statistics and application to identify hot connection flows. In
at least one of the various embodiments, if hot connection
flows may be identified, the CS may determine if any should
be handled by the DFS for improved performance.

In at least one of the various embodiments, offloading a
connection flow to the DFS for handling enables the DFS to
manage packet translation using flow control data that may
have generated by the CS. In at least one of the various
embodiments, connection flows offloaded to the

DFS may benefit from performance improvements that
arising from the high-performance hardware that may com-
prise the DFS. In at least one of the various embodiments,
storing the flow control data for connection flows in the high-
speed flow cache that may correspond to the DFS may occur
if the connection flow may be offloaded to the DFS for han-
dling.

Tlustrative Operating Environment

FIG. 1 shows components of one embodiment of an envi-
ronment in which the invention may be practiced. Not all of
the components may be required to practice the invention, and
variations in the arrangement and type of the components
may be made without departing from the spirit or scope of the
invention.

As shown, system 100 of FIG. 1 includes local area net-
works (“LANs”)/wide area networks (“WANs”)-(network)
108, wireless network 107, client devices 102-105, packet
traffic management device (“PTMD”) 109, and server
devices 110-111. Network 108 is in communication with and
enables communication between client devices 102-105,
wireless network 107, and PTMD 109. Carrier network 107

US 9,338,095 B2

5

further enables communication with wireless devices, such as
client devices 103-105. PTMD 109 is in communication with
network 108 and server devices 110-111.

One embodiment of client devices 102-105 is described in
more detail below in conjunction with FIG. 2. In one embodi-
ment, at least some of client devices 102-105 may operate
over a wired and/or a wireless network, such as networks 107
and/or 108. Generally, client devices 102-105 may include
virtually any computing device capable of communicating
over a network to send and receive information, including
instant messages, performing various online activities, or the
like. It should be recognized that more or less client devices
may be included within a system such as described herein,
and embodiments are therefore not constrained by the num-
ber or type of client devices employed.

Devices that may operate as client device 102 may include
devices that typically connect using a wired or wireless com-
munications medium, such as personal computers, servers,
multiprocessor systems, microprocessor-based or program-
mable consumer electronics, network PCs, or the like. In
some embodiments, client devices 102-105 may include vir-
tually any portable computing device capable of connecting
to another computing device and receiving information, such
as laptop computer 103, smart phone 104, tablet computer
105, or the like. However, portable computer devices are not
so limited and may also include other portable devices, such
as cellular telephones, display pagers, radio frequency (“RF”)
devices, infrared (“IR”) devices, Personal Digital Assistants
(“PDAs”), handheld computers, wearable computers, inte-
grated devices combining one or more of the preceding
devices, and the like. As such, client devices 102-105 typi-
cally range widely in terms of capabilities and features. More-
over, client devices 102-105 may provide access to various
computing applications, including a browser, or other web-
based applications.

A web-enabled client device may include a browser appli-
cation that is configured to receive and to send web pages,
web-based messages, and the like. The browser application
may be configured to receive and display graphics, text, mul-
timedia, and the like, employing virtually any web-based
language, including a wireless application protocol messages
(“WAP”), and the like. In one embodiment, the browser appli-
cation is enabled to employ Handheld Device Markup Lan-
guage (“HDML”), Wireless Markup Language (“WML”),
WML Script, JavaScript, Standard Generalized Markup Lan-
guage (“SGML”), HyperText Markup Language (“HTML”),
eXtensible Markup Language (“XML”), and the like, to dis-
play and send a message. In one embodiment, a user of the
client device may employ the browser application to perform
various activities over a network (online). However, another
application may also be used to perform various online activi-
ties.

Client devices 102-105 also may include at least one other
client application that is configured to receive and/or send
data between another computing device. The client applica-
tion may include a capability to send and/or receive content,
or the like. The client application may further provide infor-
mation that identifies itself, including a type, capability,
name, or the like. In one embodiment, client devices 102-105
may uniquely identify themselves through any of a variety of
mechanisms, including a phone number, Mobile Identifica-
tion Number (“MIN™), an electronic serial number (“ESN”),
or other mobile device identifier. The information may also
indicate a content format that the mobile device is enabled to
employ. Such information may be provided in a network
packet, or the like, sent between other client devices, PTMD
109, server devices 110-111, or other computing devices.

10

15

20

25

30

35

40

45

50

55

60

65

6

Client devices 102-105 may further be configured to
include a client application that enables an end-user to log
into an end-user account that may be managed by another
computing device, such as server devices 110-111, or the like.
Such end-user accounts, in one non-limiting example, may be
configured to enable the end-user to manage one or more
online activities, including in one non-limiting example,
search activities, social networking activities, browse various
websites, communicate with other users, participate in gam-
ing, interact with various applications, or the like. However,
participation in online activities may also be performed with-
out logging into the end-user account.

Wireless carrier network 107 is configured to couple client
devices 103-105 and its components with network 108. Wire-
less carrier network 107 may include any of a variety of
wireless sub-networks that may further overlay stand-alone
ad-hoc networks, and the like, to provide an infrastructure-
oriented connection for client devices 102-105. Such sub-
networks may include mesh networks, Wireless LAN
(“WLAN”) networks, cellular networks, and the like. In one
embodiment, the system may include more than one wireless
network.

Wireless carrier network 107 may further include an
autonomous system of terminals, gateways, routers, and the
like connected by wireless radio links, and the like. These
connectors may be configured to move freely and randomly
and organize themselves arbitrarily, such that the topology of
wireless carrier network 107 may change rapidly.

Wireless carrier network 107 may further employ a plural-
ity of access technologies including 2nd (2G), 3rd (3G), 4th
(4G) 5" (5G) generation radio access for cellular systems,
WLAN, Wireless Router (“WR”) mesh, and the like. Access
technologies such as 2G, 3G, 4G, 5G, and future access
networks may enable wide area coverage for mobile devices,
such as client devices 103-105 with various degrees of mobil-
ity. In one non-limiting example, carrier network 107 may
enable a radio connection through a radio network access
such as Global System for Mobil communication (“GSM”),
General Packet Radio Services (“GPRS”), Enhanced Data
GSM Environment (“EDGE”), code division multiple access
(“CDMA”), time division multiple access (“TDMA”), Wide-
band Code Division Multiple Access (“WCDMA”), High
Speed Downlink Packet Access (“HSDPA”), Long Term Evo-
Iution (“LTE”), and the like. In essence, carrier network 107
may include virtually any wireless communication mecha-
nism by which information may travel between client devices
103-105 and another computing device, network, and the
like.

Network 108 is configured to couple network devices with
other computing devices, including, server devices 110-111
through PTMD 109, client device 102, and client devices
103-105 through wireless carrier network 107. Network 108
is enabled to employ any form of computer readable media
for communicating information from one electronic device to
another. Also, network 108 can include the Internet in addi-
tion to LANs, WANSs, direct connections, such as through a
universal serial bus (“USB”) port, other forms of computer
readable media, or any combination thereof. On an intercon-
nected set of LANs, including those based on differing archi-
tectures and protocols, a router acts as a link between LANGs,
enabling messages to be sent from one to another. In addition,
communication links within [LANs typically include twisted
wire pair or coaxial cable, while communication links
between networks may utilize analog telephone lines, full or
fractional dedicated digital lines including T1, T2, T3, and
T4, and/or other carrier mechanisms including, for example,
E-carriers, Integrated Services Digital Networks (“ISDNs”),

US 9,338,095 B2

7

Digital Subscriber Lines (“DSLs”), wireless links including
satellite links, or other communications links known to those
skilled in the art. Moreover, communication links may further
employ any of a variety of digital signaling technologies,
including without limit, for example, DS-0, DS-1, DS-2,
DS-3, DS-4, OC-3, OC-12, OC-48, or the like. Furthermore,
remote computers and other related electronic devices could
be remotely connected to either LANs or WANs via a modem
and temporary telephone link. In one embodiment, network
108 may be configured to transport information of an Internet
Protocol (“IP”). In essence, network 108 includes any com-
munication method by which information may travel
between computing devices.

Additionally, communication media typically embodies
computer readable instructions, data structures, program
modules, or other transport mechanism and includes any
information delivery media. By way of example, communi-
cation media includes wired media such as twisted pair,
coaxial cable, fiber optics, wave guides, and other wired
media and wireless media such as acoustic, RF, infrared, and
other wireless media.

One embodiment of PTMD 109 is described in more detail
below in conjunction with FIG. 3. Briefly, however, PTMD
109 may include virtually any network device capable of
managing network traffic between client devices 102-105 and
server devices 110-111. Such devices include, for example,
routers, proxies, firewalls, load balancers, cache devices,
devices that perform network address translation, or the like,
or any combination thereof. PTMD 109 may perform the
operations of routing, translating, switching packets, or the
like. In one embodiment, PTMD 109 may inspect incoming
network packets, and may perform an address translation,
port translation, a packet sequence translation, and the like,
and route the network packets based, at least in part, on the
packet inspection. In some embodiments, PTMD 109 may
perform load balancing operations to determine a server
device to direct a request. Such load balancing operations
may be based on network traffic, network topology, capacity
of a server, content requested, or a host of other traffic distri-
bution mechanisms.

PTMD 109 may include a control segment and a separate
data flow segment. The control segment may include soft-
ware-optimized operations that perform high-level control
functions and per-flow policy enforcement for packet traffic
management. In at least one of the various embodiments, the
control segment may be configured to manage connection
flows maintained at the data flow segment. In one embodi-
ments, the control segment may provide instructions, such as,
for example, a packet translation instruction, to the data flow
segment to enable the data flow segment to route received
packets to a server device, such as server device 110-111. The
data flow segment may include hardware-optimized opera-
tions that perform statistics gathering, per-packet policy
enforcement (e.g., packet address translations), high-speed
flow caches, or the like, on connection flows maintained at
DEFES between client devices, such as client devices 102-105,
and server devices, such as server devices 110-111.

Server devices 110-111 may include virtually any network
device that may operate as a website server. However, server
devices 110-111 are not limited to website servers, and may
also operate as messaging server, a File Transfer Protocol
(FTP) server, a database server, content server, or the like.
Additionally, each of server devices 110-111 may be config-
ured to perform a different operation. Devices that may oper-
ate as server devices 110-111 include various network
devices, including, but not limited to personal computers,
desktop computers, multiprocessor systems, microprocessor-

10

15

20

25

30

35

40

45

50

55

60

65

8

based or programmable consumer electronics, network PCs,
server devices, network appliances, and the like.

Although FIG. 1 illustrates server devices 110-111 as
single computing devices, the invention is not so limited. For
example, one or more functions of each of server devices
110-111 may be distributed across one or more distinct net-
work devices. Moreover, server devices 110-111 are not lim-
ited to a particular configuration. Thus, in one embodiment,
server devices 110-111 may contain a plurality of network
devices that operate using a master/slave approach, where one
of'the plurality of network devices of server devices 110-111
operate to manage and/or otherwise coordinate operations of
the other network devices. In other embodiments, the server
devices 110-111 may operate as a plurality of network
devices within a cluster architecture, a peer-to-peer architec-
ture, and/or even within a cloud architecture. Thus, the inven-
tion is not to be construed as being limited to a single envi-
ronment, and other configurations, and architectures are also
envisaged.

Tlustrative Client Device

FIG. 2 shows one embodiment of client device 200 that
may be included in a system implementing embodiments of
the invention. Client device 200 may include many more or
less components than those shown in FIG. 2. However, the
components shown are sufficient to disclose an illustrative
embodiment for practicing the present invention. Client
device 200 may represent, for example, one embodiment of at
least one of client devices 102-105 of FIG. 1.

As shown in the figure, client device 200 includes a pro-
cessor 202 in communication with memory 226 via abus 234.
Client device 200 also includes a power supply 228, one or
more network interfaces 236, an audio interface 238, a dis-
play 240, a keypad 242, and an input/output interface 248.

Power supply 228 provides power to client device 200. A
rechargeable or non-rechargeable battery may be used to
provide power. The power may also be provided by an exter-
nal power source, such as an AC adapter or a powered docking
cradle that supplements and/or recharges a battery.

Client device 200 may optionally communicate with a base
station (not shown), or directly with another computing
device. Network interface 236 includes circuitry for coupling
client device 200 to one or more networks, and is constructed
for use with one or more communication protocols and tech-
nologies including, but not limited to, global system for
mobile communication (“GSM”), code division multiple
access (“CDMA”), time division multiple access (“TDMA”),
High Speed Downlink Packet Access (“HSDPA”), Long
Term Evolution (“LTE”), user datagram protocol (“UDP”),
transmission control protocol/Internet protocol (“TCP/IP”),
short message service (“SMS”), general packet radio service
(“GPRS”), WAP, ultra wide band (“UWB”), IEEE 802.16
Worldwide Interoperability for Microwave Access
(“WiMax™), session initiated protocol/real-time transport
protocol (“SIP/RTP”), or any of a variety of other wireless
communication protocols. Network interface 236 is some-
times known as a transceiver, transceiving device, or network
interface card (“NIC”).

Audio interface 238 is arranged to produce and receive
audio signals such as the sound of a human voice. For
example, audio interface 238 may be coupled to a speaker and
microphone (not shown) to enable telecommunication with
others and/or generate an audio acknowledgement for some
action.

Display 240 may be a liquid crystal display (“LCD”), gas
plasma, light emitting diode (“LED”), or any other type of
display used with a computing device. Display 240 may also

US 9,338,095 B2

9

include a touch sensitive screen arranged to receive input
from an object such as a stylus or a digit from a human hand.

Keypad 242 may comprise any input device arranged to
receive input from a user. For example, keypad 242 may
include a push button numeric dial, or a keyboard. Keypad
242 may also include command buttons that are associated
with selecting and sending images.

Client device 200 also comprises input/output interface
248 for communicating with external devices, such as a head-
set, or other input or output devices not shown in FIG. 2.
Input/output interface 248 can utilize one or more communi-
cation technologies, such as USB, infrared, Bluetooth™, or
the like.

Client device 200 may also include a GPS transceiver (not
shown) to determine the physical coordinates of client device
200 on the surface of the Earth. A GPS transceiver typically
outputs a location as latitude and longitude values. However,
the GPS transceiver can also employ other geo-positioning
mechanisms, including, but not limited to, triangulation,
assisted GPS (“AGPS”), Enhanced Observed Time Differ-
ence (“E-OTD”), Cell Identifier (“CI”), Service Area Identi-
fier (“SAI”), Enhanced Timing Advance (“ETA”), Base Sta-
tion Subsystem (“BSS”), or the like, to further determine the
physical location of client device 200 on the surface of the
Earth. It is understood that under different conditions, a GPS
transceiver can determine a physical location within millime-
ters for client device 200; and in other cases, the determined
physical location may be less precise, such as within a meter
or significantly greater distances. In one embodiment, how-
ever, mobile device 200 may through other components, pro-
vide other information that may be employed to determine a
physical location of the device, including for example, a
Media Access Control (“MAC”) address, IP address, or the
like.

Memory 226 includes a Random Access Memory
(“RAM”) 204, a Read-only Memory (“ROM™) 222, and other
storage means. Mass memory 226 illustrates an example of
computer readable storage media (devices) for storage of
information such as computer readable instructions, data
structures, program modules or other data. Mass memory 226
stores a basic input/output system (“BIOS”) 224 for control-
ling low-level operation of client device 200. The mass
memory also stores an operating system 206 for controlling
the operation of client device 200. It will be appreciated that
this component may include a general-purpose operating sys-
tem such as a version of UNIX, or LINUX™, or a specialized
client communication operating system such as Windows
Mobile™, or the Symbian® operating system. The operating
system may include, or interface with a Java virtual machine
module that enables control of hardware components and/or
operating system operations via Java application programs.

Mass memory 226 further includes one or more data stor-
age 208, which can be utilized by client device 200 to store,
among other things, applications 214 and/or other data. For
example, data storage 208 may also be employed to store
information that describes various capabilities of client
device 200. The information may then be provided to another
device based on any of a variety of events, including being
sent as part of a header during a communication, sent upon
request, or the like. Data storage 208 may also be employed to
store social networking information including address books,
buddy lists, aliases, user profile information, or the like. Fur-
ther, data storage 208 may also store message, we page con-
tent, or any of a variety of user generated content. At least a
portion of the information may also be stored on another
component of network device 200, including, but not limited

10

15

20

25

30

35

40

45

50

55

60

65

10

to processor readable storage device 230, a disk drive or other
computer readable storage medias (not shown) within client
device 200.

Processor readable storage device 230 may include vola-
tile, nonvolatile, removable, and non-removable media
implemented in any method or technology for storage of
information, such as computer- or processor-readable
instructions, data structures, program modules, or other data.
Examples of computer readable storage media include RAM,
ROM, EFElectrically Erasable Programmable Read-only
Memory (“EEPROM”), flash memory or other memory tech-
nology, Compact Disc Read-only Memory (“CD-ROM”),
digital versatile disks (“DVD”) or other optical storage, mag-
netic cassettes, magnetic tape, magnetic disk storage or other
magnetic storage devices, or any other physical medium
which can be used to store the desired information and which
can be accessed by a computing device. Processor readable
storage device 230 may also be referred to herein as computer
readable storage media.

Applications 214 may include computer executable
instructions which, when executed by client device 200,
transmit, receive, and/or otherwise process network data.
Network data may include, but is not limited to, messages
(e.g., SMS, Multimedia Message Service (“MMS”), instant
message (“IM”), email, and/or other messages), audio, video,
and enable telecommunication with another user of another
client device. Applications 214 may include, for example,
browser 218. Applications 214 may include other applica-
tions, which may include, but are not limited to, calendars,
search programs, email clients, IM applications, SMS appli-
cations, voice over Internet Protocol (“VOIP”) applications,
contact managers, task managers, transcoders, database pro-
grams, word processing programs, security applications,
spreadsheet programs, games, search programs, and so forth.

Browser 218 may include virtually any application config-
ured to receive and display graphics, text, multimedia, and the
like, employing virtually any web based language. In one
embodiment, the browser application is enabled to employ
HDML, WML, WMLScript, JavaScript, SGML, HTML,
XML, and the like, to display and send a message. However,
any of a variety of other web-based programming languages
may be employed. In one embodiment, browser 218 may
enable a user of client device 200 to communicate with
another network device, such as PTMD 109 and/or with
server devices 110-111.

Iustrative Network Device

FIG. 3 shows one embodiment of a network device 300,
according to one embodiment of the invention. Network
device 300 may include many more or less components than
those shown. The components shown, however, are sufficient
to disclose an illustrative embodiment for practicing the
invention. Network device 300 may be configured to operate
as a server, client, peer, a host, or any other device. Network
device 300 may represent, for example PTMD 109 of FIG. 1,
server devices 110-111 of FIG. 1, and/or other network
devices.

Network device 300 includes processor 302, processor
readable storage device 328, network interface unit 330, an
input/output interface 332, hard disk drive 334, video display
adapter 336, data flow segment (“DFS”) 338 and a mass
memory, all in communication with each other via bus 326.
The mass memory generally includes RAM 304, ROM 322
and one or more permanent mass storage devices, such as
hard disk drive 334, tape drive, optical drive, and/or floppy
disk drive. The mass memory stores operating system 306 for
controlling the operation of network device 300. Any general-
purpose operating system may be employed. Basic input/

US 9,338,095 B2

11

output system (“BIOS”) 324 is also provided for controlling
the low-level operation of network device 300. As illustrated
in FIG. 3, network device 300 also can communicate with the
Internet, or some other communications network, via net-
work interface unit 330, which is constructed for use with
various communication protocols including the TCP/IP pro-
tocol. Network interface unit 330 is sometimes known as a
transceiver, transceiving device, or network interface card
(“NIC”).

Network device 300 also comprises input/output interface
332 for communicating with external devices, such as a key-
board, or other input or output devices not shown in FIG. 3.
Input/output interface 332 can utilize one or more communi-
cation technologies, such as USB, infrared, Bluetooth™, or
the like.

The mass memory as described above illustrates another
type of computer readable media, namely computer readable
storage media and/or processor readable storage media,
including processor readable storage device 328. Processor
readable storage device 328 may include volatile, nonvolatile,
removable, and non-removable media implemented in any
method or technology for storage of information, such as
computer readable instructions, data structures, program
modules, or other data. Examples of processor readable stor-
age media include RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,
or any other media which can be used to store the desired
information and which can be accessed by a computing
device.

Data storage 308 may include a database, text, spreadsheet,
folder, file, or the like, that may be configured to maintain and
store user account identifiers, user profiles, email addresses,
IM addresses, and/or other network addresses; or the like.
Data stores 308 may further include program code, data,
algorithms, and the like, for use by a processor, such as central
processing unit 302 to execute and perform actions. In one
embodiment, at least some of data store 308 might also be
stored on another component of network device 300, includ-
ing, but not limited to processor-readable storage device 328,
hard disk drive 334, or the like.

The mass memory may also stores program code and data.
One or more applications 314 may be loaded into mass
memory and run on operating system 306. Examples of appli-
cation programs may include transcoders, schedulers, calen-
dars, database programs, word processing programs, Hyper-
text Transfer Protocol (“HTTP”) programs, customizable
user interface programs, IPSec applications, encryption pro-
grams, security programs, SMS message servers, IM message
servers, email servers, account managers, and so forth. Web
server 316 and control segment (“CS”) 318 may also be
included as application programs within applications 314.

Web server 316 represent any of a variety of services that
are configured to provide content, including messages, over a
network to another computing device. Thus, web server 316
includes, for example, a web server, a File Transfer Protocol
(“FTP”) server, a database server, a content server, or the like.
Web server 316 may provide the content including messages
over the network using any of a variety of formats including,
but not limited to WAP, HDML, WML, SGML, HTML,
XML, Compact HTML (“cHTML”), Extensible HTML
(“xHTML”), or the like. Web server 316 may also be config-
ured to enable a user of a client device, such as client devices
102-105 of FIG. 1, to browse websites, upload user data, or
the like.

10

15

20

25

30

35

40

45

50

55

60

65

12

Network device 300 may also include DFS 338 for main-
taining connection flows between client devices, such as cli-
ent devices 102-105 of FIG. 1, and server devices, such as
server devices 110-111 of FIG. 1. In one embodiment, DFS
338 may include hardware-optimized operations for packet
traffic management, such as repetitive operations associated
with packet traffic management. For example, DFS 338 may
perform statistics gathering, per-packet policy enforcement
(e.g., packet address translations), or the like, on connection
flows maintained at DFS 338. In some embodiments, DFS
338 may route, switch, forward, direct and/or otherwise
handle packets based on rules for a particular connection flow
signature (e.g., a 5 tuple of a received packet). Thus, DFS 338
may include capabilities and perform tasks such as that of a
router, a switch, a routing switch, or the like. In some embodi-
ments, the rules for a particular connection flow signature
may be based on instructions received from CS 318. In one
embodiment, DFS 338 may store the instructions received
from CS 318 in a local memory as a table or some other data
structure. In some other embodiments, DFS 338 may also
store a flow state table to indicate a state of current connection
flows maintained at DFS 338. In at least one of the various
embodiments, components of DFS 338 may comprise and/or
work in combination to provide high-speed flow caches for
optimizing packet traffic management.

In some embodiments, DFS 338 may provide connection
flow status updates to CS 318. In one embodiment, a connec-
tion flow status update may include a status of the connection
flow, a current state of the connection flow, other statistical
information regarding the connection flow, or the like. The
connection flow update may also include an identifier that
corresponds to the connection flow. The identifier may be
generated and provided by CS 318 when a connection flow is
established at DFS 338. In some embodiments, the connec-
tion flow update may be a connection flow delete update
provided to CS 318 after the connection flow is terminated at
DFS 338. The connection flow status update and/or the con-
nection flow delete update may be provided to CS 318 peri-
odically, at predefined time intervals, or the like. In some
embodiments, DFS 338 may stagger a time when a plurality
of connection flow status updates are provided to CS.

In some other embodiments, DFS 338 may include a plu-
rality of data flow segments. In one non-limiting example, a
first data flow segment within DFS 338 may forward packets
received from a client device to a server device, while a
second data flow segment within DFS 338 may forward and/
or route packets received from a server device to a client
device. In at least one of the various embodiments, DFS 338
may also be implemented in software.

CS 318 may include a control segment that may include
software-optimized operations to perform high-level control
functions and per-flow policy enforcement for packet traffic
management. CS 318 may be configured to manage connec-
tion flows maintained at DFS 338. In one embodiments, CS
318 may provide instructions, such as, for example, a packet
address translation instructions, to DFS 338 to enable DFS
338 to forward received packets to a server device, such as
server device 110-111 of FIG. 1. In some other embodiments,
CS 318 may forward and/or route packets between a client
device and a server device independent of DFS 338.

In at least one of the various embodiments, CS 318 may
include a plurality of control segments. In some embodi-
ments, a plurality of control segments may access and/or
manage connection flows at a single data flow segments and/
or a plurality of data flow segments. In some other embodi-
ments, CS 318 may include an internal data flow segment. In
one such embodiment, the internal data flow segment of CS

US 9,338,095 B2

13

318 may be distributed and/or separate from CS 318. For
example, in one embodiment, CS 318 may be employed in
software, while the internal data flow segment may be
employed in hardware. In some other embodiments, CS 318
may identify if connection flows are split between different
data flow segments and/or between a DFS 338 and CS 318. In
at least one embodiment, CS 318 may also be implemented in
hardware.

In atleast one of the various embodiments, CS 318 may be
configured to generate an identifier for each connection flow
established at DFS 338. In some embodiments, CS 318 may
utilize a sequence number of a SYN to generate an identifier
for a corresponding connection flow.

In one embodiment, the identifier may be based on a hash
of the sequence number. In another embodiment, the identi-
fier may be based on an exclusive OR byte operation of the
sequence number. CS 318 may cache the identifier at CS 318
and may provide the identifier to DFS 338. In some embodi-
ments, CS 318 may cache an identifier for each connection
flow it establishes at DFS 338.

FIG. 4A illustrates a system diagram generally showing
one embodiment of a system with a packet traffic manage-
ment device disposed between client devices and server
devices. System 400A may include packet traffic manage-
ment device (“PTMD”) 404 disposed between client devices
402-403 and server devices 410-411. Client devices 402-403
may include Client_1 through Client_M, which may include
one or more client devices, such as client devices 200 of FIG.
2. Server devices 410-411 may include Server_1 through
Server_N, which may include one or more server devices,
such as server devices 110-111 of FIG. 1.

In one embodiment, PTMD 404 may be an embodiment of
PTMD 109 of FIG. 1. PTMD 404 may include data flow
segment (“DFS”) 406 in communication with control seg-
ment (“CS”) 408. In at least one of the various embodiments,
DFS 406 may be an embodiment of DFS 338 of FIG. 3, and
CS 408 may be an embodiment of CS 318 of FIG. 3.

CS 408 may be configured to communicate with DFS 406,
client devices 402-403 and/or server devices 410-411 inde-
pendent of DFS 406, and/or any combination thereof. CS 408
may establish connection flows at DFS 406. In some embodi-
ments, CS 408 may establish a connection flow at DFS 406 by
providing instructions including flow control data to DFS 406
that enables DFS 406 to forward packets received at PTMD
404. In one embodiment, CS 408 may perform a load balanc-
ing operation to select a server device of server devices 410-
411 to receive packets sent from a client device, such as client
device 402. In some other embodiments, CS 408 may gener-
ate and cache a connection flow identifier to be provided to
DFS 406 when the connection flow is established.

DFS 406 may be configured to facilitate communications
between client devices 402-403 and server devices 410-411.
DFS 406 may process and forward packets received at PTMD
404 based on the instructions and flow control data received
from CS 408. For example, in one embodiment, DFS 406
utilizes the instructions and/or flow control data to forward
packets received from client device 402 to server device 410
and to forward packets received from server device 410 to
client device 402. In some embodiments, DFS 406 may for-
ward predetermined packets to CS 408, such as, but not
limited to, new connection flow requests (e.g., associated
with a SYN). In yet other embodiments, DFS 406 may notify
CS 408 that a packet was received and forwarded. In one
non-limiting, non-exhaustive example, DFS 406 may notify
CS 408 that an ACK was received from client device 402 and
forwarded to server device 410. In at least one of the various
embodiments, DFS 406 may also provide connection flow

10

15

20

25

30

35

40

45

50

55

60

65

14

updates and a corresponding connection flow identifier to CS
408. CS 408 may compare the corresponding connection flow
identifier with the cached identifier to determine if the con-
nection flow update is valid.

In at least one of the various embodiments, DFS 406 may
send evict messages to CS 408 if connection flow are evicted
from the DFS 406. In at least one of the various embodiments,
DFS 406 may evict a connection flow if new flows arrive and
the capacity of the DFS to handle new connection flow may be
exceeded. In at least one of the various embodiments, evic-
tions from DFS 406 may occur if the high speed flow cache
for storing flow control data exhausts its ability to store the
flow control data for new connection flows. In at least one of
the various embodiments, evict messages sent from DFS 406
to CS 408 may contain enough information to fully identify
the connection flow (e.g., endpoints, ports, sequent numbers,
flow state, or the like).

In at least one of the various embodiments, CS 408 may
receive and route packets associated with evicted connection
flows, thereby taking on some of the duties of DFS 406. In at
least one of the various embodiments, some new connection
flow may not be offloads to DFS 406 if CS 408 determines
that the connection flows may be management on the CS orif
the CS determines that more information may be required to
determine if the connection flow should be offloaded to DFS
406.

Although PTMD 404 illustrates DFS 406 and CS 408 as
two partitions within a single PTMD 404, the invention is not
so limited. Rather, in some embodiments, DFS 406 and CS
408 may be functional blocks in a same PTMD 404 (i.e., a
same chassis/computing device). In other embodiments, DFS
406 may be implemented by one or more chassis/computing
devices separate from one or more other chassis/computing
devices that may be utilized to implement CS 408. In yet other
embodiments, CS 408 may be a module that plugs into DFS
406. Additionally, it is envisaged that the functionality of
either DFS 406 and/or CS 408 may be separately imple-
mented in software and/or hardware.

FIG. 4B illustrates a system diagram generally showing
one embodiment of a system with a packet traffic manage-
ment device disposed between client devices and server
devices. System 400B may include packet traffic manage-
ment device (“PTMD”) 404 disposed between client devices
402-403 and server devices 410-411. Client devices 402-403
may include Client 1 through Client_M, which may include
one or more client devices, such as client devices 102-105 of
FIG. 1. Server devices 410-411 may include Server 1 through
Server N, which may include one or more server devices, such
as server devices 110-111 of FIG. 1.

In one embodiment, PTMD 404 may be an embodiment of
PTMD 404 of FIG. 4. PTMD 404 may include data flow
segments (“DFS”) 406-407 and control segments (“CS”)
408-409. DFS 406-407 may include a plurality of data flow
segments, each of which may be an embodiment of DFS 406
of FIG. 4A. CS 408-409 may include a plurality of control
flow segments, each of which may be an embodiment of CS
408 of FIG. 4.

In some embodiments, data communicated between client
devices 402-403 and server devices 410-411 may flow
through one or more data flow segments 406-407. In one
embodiment, data from client devices 402-403 may flow
through a first DFS, such as DFS 406 and data from server
devices 410-411 may flow through a second DFS, such as
DFS 407.

In at least one of the various embodiments, one or more
data flow segments of DFS 406-407 may communicate with
one or more control segments of CS 408-409. Similarly, one

US 9,338,095 B2

15

or more control segments of CS 408-409 may communicate
with one or more data flow segments of DFS 406-407. In
some embodiments, each control segment of CS 408-409
may communicate (not shown) with other control segments
of CS 408-409. In other embodiments, each data flow seg-
ment of DFS 406-407 may communicate (not shown) with
other data flow segments of DFS 406-407.

Also, in at least one of the various embodiments, connec-
tion flows may be split into flow portions based on the direc-
tion of network packet travel. In at least one of the various
embodiments, the network packets coming from the client
may treated as a separate connection flow and the network
packets coming from a server and directed towards a client
may be treated as a separate connection flow. In at least one of
the various embodiments, this enables optimizations based on
the amount of network packet traffic of a particular split
connection flows. In at least one of the various embodiments,
this may enable the upload and download direction portion of
connection flows to be split across CS 408-409 and DFS
406-407 based on the characteristics of the upload and down-
load portions of the connection flows. For example, in at least
one of the various embodiments, if downloading streaming
video may be a very asymmetric operation having many
network packets download to the client and few uploaded. In
at least one of the various embodiments, the upload and
download portions of connection flow in the download direc-
tion may be optimized independent with one portion using the
DFS and a high-speed flow cache and the other portion may
be handled on the CS using lower performing (e.g., less
expensive) resources.

FIG. 5 illustrates an embodiment of a sequence for estab-
lishing a connection flow and offloading the new connection
flow to the data flow segment (DFS). Sequence 500 may show
an embodiment using TCP/IP networking protocol but one of
ordinary skill the art will appreciate that the sequence dia-
gram (or similar sequences) may generally apply to other
networking protocols that may have other handshaking
sequences as well. Also, even though sequence 500 depicts a
sequence including one client, one DFS, one CS, and one
application server, in at least one of the various embodiments,
one or more, data flow segments, control segments, clients,
and servers, may be participate in handshaking and in the
connection flow offloading. Also, in at least one of the various
embodiments, the connection flows may be split into upload
and download portions of a connection flow, with each por-
tion representing one direction of the connection flow.

In at least one of the various embodiments, sequence 500
begins at step 502 if a client initiates a connection with a
network resource that may be managed by a PTMD, such as
PTMD 109. If client may be initiating the connection using
TCP/IP, a SYN packet may be sent to the PTMD.

At step 504 a SYN packet may be received at a DFS that
may be part of a PTMD. In at least one of the various embodi-
ments, at step 506, because the DFS may determine that the
incoming connection represents a new connection flow, the
DFS may forward the SYN packet to a CS. At step 506 a CS
may examine the connection flow and may determine the
appropriate flow control data for the new flow and send it to
the DFS. In at least one of the various embodiments, CS may
apply one or more stored rules that may be used to determine
the flow control data for the new network connection flow. In
at least one of the various embodiments, the stored rules may
implement network traffic management services such as load
balancing, application access control, or the like.

In at least one of the various embodiments, at step 508 the
DFS may receive the flow control data from the CS and store
it in a high speed flow cache. In at least one of the various

10

15

20

25

30

35

40

45

50

55

60

65

16

embodiments, the flow control data may be used by the DFS
to forward the SYN packet to an appropriate server and/or
network resource as directed by the flow control data that may
be provided by the CS.

In at least one of the various embodiments, at step 510 a
server and/or network resource may receive the SYN packet
and may respond by sending a SYN-ACK packet to the DFS.
In at least one of the various embodiments, at step 512 the
DFS may again use the flow control data stored in the high
speed flow cache to map and/or translate the SYN_ACK from
a server to the appropriate client.

In at least one of the various embodiments, at step 514 the
client device that sent the initial SYN packet may receive the
corresponding SYN_ACK and subsequently may respond
with an ACK packet. In at least one of the various embodi-
ments, at step 516 the DFS, using the stored flow control data
to determine the network path the to server, may forward the
ACK packet to the server.

In at least one of the various embodiments, at step 518 the
server may receive the ACK packet corresponding to the
client device. After the ACK may have been received, the
network connection flow may be in an established state. In at
least one of the various embodiments, during steps 520-524,
using the established network connection flow, the server may
begin exchanging application data with client. In at least one
of the various embodiments, at this point, for each exchange
of data, the DFS may use the flow control data that may be
stored in the high speed flow cache to map between the
application servers and the client to route the packets on the
correct path to maintain the connection flow.

General Operation

FIG. 6 shows a flowchart showing at least one of the vari-
ous embodiments of a process for packet traffic management.
In process 600, after a start block, at block 602 a network
packet may be received by a DFS. In at least one of the various
embodiments, the network packets may be received from
network 108, and/or may have been forwarded through mul-
tiple networks, switches, routers, other PTMDs or the like.

At decision block 604, in at least one of the various
embodiments, if the received network packet may be associ-
ated with a new connection flow, control may move to block
606. Otherwise, in at least one of the various embodiments,
control may move to decision block 608.

In at least one of the various embodiments, a DFS may
examine the connection flow and compare it the flow control
data that may be stored in a high-speed cache. In at least one
of the various embodiments, a tuple corresponding to the
network packet may be examined to determine if the network
packet is part of a new connection flow. If a tuple correspond-
ing to the incoming network packet may not be found in the
high-speed flow cache the DFS may determine that the net-
work packet may be part of a new connection flow.

At block 606, in at least one of the various embodiments,
the incoming network packet that may be associated with a
new connection flow may be forwarded to a CS for further
processing. In at least one of the various embodiments, the
incoming network packet may be sent to a CS using a com-
mand bus that may enable DFS and CS components to
exchange data and messages. Next, control may move deci-
sion block 614.

At decision block 608, in at least one of the various
embodiments, if flow control data may be available for the
connection flow associated with network packet, control may
move to block 710. Otherwise, in at least one of the various
embodiments, control may move to block 612.

At block 610, in at least one of the various embodiments,
the DFS may forward the network packet to its next destina-

US 9,338,095 B2

17

tion based on the flow control data and/or information asso-
ciated with the network packet’s corresponding connection
flow that may be stored in the high speed flow cache that
corresponds to the DFS. Next, in at least one of the various
embodiments, control may move to decision block 614.

At block 612, in at least one of the various embodiments,
the network packet having a previously seen tuple may be
stored in a buffer on the DFS until flow control data may be
provided by the CS.

In at least one of the various embodiments, a received
network packet may be associated with a connection flow that
has been previously been observed. However, in at least one
of the various embodiments, if the flow control data from the
CS may not be available, the DFS may store the network
packets associated with the connection flow in a buffer until
the relevant flow control data may be received from the CS.

Also, in at least one of the various embodiments, incoming
network packets associated with unknown and/or new con-
nection flows may be forwarded to the CS for buffering, rather
than buffering on the DFS, until a flow control data determi-
nation may be made by the CS.

At decision block 614, in at least one of the various
embodiments, if there may be more incoming network pack-
ets, control may loop back to block 602. Otherwise, in at least
one of the various embodiments, control may be returned to a
calling process.

FIG. 7 shows a flowchart of process 700, in at least one of
the various embodiments, for handling new connection flows
at a DFS. After a start block, at block 702 a DFS component
may receive new flow control data from a CS. In at least one
of the various embodiments, if new flow control data may be
received, the DFS may store the flow data into a high-speed
flow cache.

In at least one of the various embodiments, the new flow
control data may be sent to the DFS as part of a “new flow”
control message sent from the CS to the DFS.

At decision block 704, in at least one of the various
embodiments, if the DFS high-speed flow cache may be full,
control may move to block 706. Otherwise, in at least one of
the various embodiments, control may move block 708.

In at least one of the various embodiments, the high-speed
flow cache may be implemented as a hash such that the a hash
key may be generated for each new connection flow based on
properties of the connection flow such as the tuple, CS gen-
erated connection identifier, SYN cookie, or the like. In at
least one of the various embodiments, if the range (number of
unique values) of the hash key may be more than the number
of slots in the high speed flow cache, the hash key may be
truncated so the number of hash key value possibilities may
be equal or similar to the number of slots in the high-speed
flow cache. In at least one of the various embodiments, trun-
cation of the hash key may increase the number of hash key
collisions. If, in at least one of the various embodiments, a
new connection flow hash key may cause hash key collision,
the connection flow currently in the cache may get evicted
(e.g., its flow control data is removed from the high speed
cache and the responsibility for managing the flow may be
transferred to the CS) to make room for the new connection
flow.

Atblock 706, in at least one of the various embodiments, to
make room for the new flow control data received from the
CS, flow control data for a different, previously cached con-
nection flow may be removed (e.g., evicted) from the DFS
high-speed flow cache. In at least one of the various embodi-
ments, the DFS may send the CS a control message indicating
that a connection flow may have been evicted from the DFS
requiring the associated flow control data to be removed from

25

35

40

45

55

18

the DFS high-speed flow cache. In at least one of the various
embodiments, the eviction message may include information,
such as, number of packets sent or received over this network
flow, age of the network flow, tuple information, or the like. In
at least one of the various embodiments, the control message
sent to the CS may contain enough information to enable the
CS to identify the network flow that may be evicted from the
DFS.

At block 708, in at least one of the various embodiments,
the flow control data associated with the new connection flow
may be stored in the DFS high-speed flow cache. In at least
one of the various embodiments, flow control data may be
stored in one or more components of the DFS that may oper-
ate singly or in combination as a high-speed flow cache.

At block 710, in at least one of the various embodiments,
the DFS may begin processing received network packets
associated with known connection flows using the flow con-
trol data that may be associated with the connection flow and
stored in the high-speed flow cache.

FIG. 8 shows a flowchart of process 800, in at least one of
the various embodiments, for handling eviction (EVICT)
messages ata CS. After a start block, at block 802, the CS may
receive an EVICT message from a DFS.

At decision block 804, in at least one of the various
embodiments, ifthe eviction message corresponds to a closed
and/or terminated connection flow control may move to block
806. Otherwise, in at least one of the various embodiments,
control may move to block 808.

At block 806, in at least one of the various embodiments,
the closed and/or terminated flow and associated flow control
data may be discarded.

At block 808, in at least one of the various embodiments,
the responsibility for managing the evicted connection flow
may be transferred to the CS. In at least one of the various
embodiments, network packets received over the transferred
connection flow may be handled by the CS.

In at least one of the various embodiments, the CS may
store the flow control data for the evicted connection flow in
alocal flow cache. In at least one of the various embodiments,
the flow cache in the CS may be arranged to include at least
the same information that may be stored regarding connec-
tion flows using the high speed flow cache on the DFS.

At decision block 810, in at least one of the various
embodiments, if there may be more eviction messages to
process, control may loop back to block 802. Otherwise, in at
least one of the various embodiments, control may be
returned to a calling process.

In at least one of the various embodiments, depending on
the circumstances, a connection flow may be handled on one
ormore DFSs, on one or more CSs, or partially on one or more
CSs and partially on one or more DFSs. In at least one of the
various embodiments, if a connection flow may be being
handled by the CS it may not receive a new flow network
message from the DFS. Likewise, if a DFS may be handling
a connection flow it may not send a new flow network mes-
sage to the CS component if the DFS can associate the incom-
ing network traffic with a known connection flow. However,
in at least one of the various embodiments, the CS may
analyze each connection flow to determine the connection
flows may be evicted from the DFS.

FIG. 9 shows a flowchart for process 900 that in at least one
of the various embodiments determines if connection flows
may be candidates for off-loading to the DFS for handling.
After a start block, at block 902, in at least one of the various
embodiments, the CS may receive a network packet associ-
ated with a connection flow that may be managed by the CS.

US 9,338,095 B2

19

In at least one of the various embodiments, network pack-
ets received by the CS may be associated connection flows
that may have their packet level processing and management
processing handled on the CS rather the DFS. In at least one
of the various embodiments, as the CS handles the received
packets at least in accordance with the stored flow control
data it may perform additional action to identify hot connec-
tion flows.

At block 904, in at least one of the various embodiments,
the CS may receive a flow status update (FSU) from a DFS. In
at least one of the various embodiments, the FSU may be
received asynchronously with respect to the network packets
that may be received by the CS. In at least one of the various
embodiments, if a FSU may be not be available control may
move to block 906.

At block 906, in at least one of the various embodiments,
the CS may update the statistics being maintained for the
connection flows. In at least one of the various embodiments,
statistics may be tracked for the connection flows being man-
aged by the CS directly as well as the connection flows that
may be managed by the DFS (e.g., off-loaded connection
flows).

In at least one of the various embodiments, the updating of
connection flow metrics may use a combination of informa-
tion from one or more FSUs and metrics that may be collected
on the CS, including, bit-rate, data sent over a time interval,
data received over a time interval, or the like. In at least one of
the various embodiments, the connection flow metrics col-
lected may be based, low level network information derived
from [L.1-1.4 as well as higher level network information
derived from L.5-L.7 (as per the Open Systems Interconnec-
tion (OSI) model).

At block 908, in at least one of the various embodiments,
the CS may analyze the collected connection flow statistics
and may apply relevant rules to identify hot connection flows.
(See, FIGS. 10 and 11.) In at least one of the various embodi-
ments, the CS may employ at least one connection flow metric
to determine each hot connection flow out of the plurality of
managed connection flows

In at least one of the various embodiments, rules may be
defined that declare that one or more specific sources, end-
points, data types, or the like may indicated to be hot connec-
tion flows. Or, in at least one of the various embodiments,
rules may be defined to adjust the priority of certain connec-
tion flows based on flow patterns, sources, endpoints, data
types, or like.

In at least one of the various embodiments, generally the
same type of flow control policies rulemaking may be
extended to influence the identification and determination of
how connection flows may be designated as hot connection
flows.

At decision block 910, if connection flows may be identi-
fied for moving from the CS to the DFS and/or from the DFS
to the CS for handling, control may move block 912. Other-
wise, in at least one of the various embodiments, control may
move to decision block 914.

In at least one of the various embodiments, the CS may
employ at least one connection flow metric to determine each
hot connection flow in the plurality of managed connection
flows.

Atblock 912, in at least one of the various embodiments, if
connection flows may be identified for moving, the CS may
generate the relevant commands and/or messages to and send
to the appropriate CS and/or DFS for handling. In at least one
of the various embodiments, some connection flows may be
moved from a DFS to the CS for handling. In at least one of

20

25

30

35

40

45

20

the various embodiments, the DFS may be employed to
handle each determined hot connection flow.

Also, in at least one of the various embodiments, some of
the connection flows that may have been identified as hot
connection flows may be moved and/or off-loaded to a DFS
for handling to benefit from at least higher performance/
processing speeds the may be associated with a DFS. Next, in
at least one of the various embodiments, control may move to
decision block 914.

At decision block 914, in at least one of the various
embodiments, if there may be more network packets available
control may loop back to block 902. Otherwise, in at least one
of the various embodiments, control may be returned to a
calling process.

FIGS. 10 and 11 describe various embodiments for identi-
fying if a connection flow may be a hot connection flow. One
of ordinary skill in the art will appreciate that the techniques,
parameters, and thresholds used to identify “hot connection
flows” may vary depending on the applications being man-
aged by a PTMD and the goals and priorities of the operators
and users of the PTMD at a particular time. In at least one of
the various embodiments, generally, the criteria for identify-
ing a hot connection flow may be defined based on the appli-
cation and user goals and if connection flow properties meet
the criteria, a connection flow may be deemed a hot connec-
tion flow.

In at least one of the various embodiments, as part of
determining if a connection flow may be a candidate for
offloading to the DFS for handling (e.g., hot connection flow),
the content of received network packets may be examined. In
at least one of the various embodiments, the network packets
may be examined to identify data patterns and meta-data that
may indicate that the connection flow may be a hot connec-
tion flow that may be a good candidate for offloading to the
DFS component.

In at least one of the various embodiments, if examining the
network packets, the CS may identify application level pro-
tocol data, messages, or meta-data for determining if the
associated connection flow may be a hot connection flow. For
example, if a CS may identify that a connection flow may be
using HTTP, the CS may examine HTTP headers such as,
Content-Type, Content-Length, Cache-Control, or the like, as
part of determining if a connection flow may be a hot con-
nection flow.

In at least one of the various embodiments, if a network
packet may be determined to be a first packet of a HTTP
response, a content length value provided by the server send-
ing the HTTP response may be available. In at least one of the
various embodiments, the HTTP content length value may
indicate the number of network packets that may be likely to
be used to transmit the complete HTTP response from the
server. For example, in at least one of the various embodi-
ments, if the content length value may indicate that the
response may use a single network packet, the associated
connection flow may not be a candidate for offloading to the
DFS because additional packets may not be expected for this
response. On the other hand, in at least one of the various
embodiments, if the content length value indicates that more
network packets may be on the way for the same response, the
connection flow may be determined to be a candidate for
offloading to the DFS component. In at least one of the vari-
ous embodiments, the content length value may correlate to
the likelihood of offloading a connection flow to a DFS (e.g.,
an increase in the content length value leads to an increase in
the chance of offloading the connection flow to the DFS).

In at least one of the various embodiments, in some cases,
the operating characteristics of a connection flow may have

US 9,338,095 B2

21

significant variance. For example, in at least one of the vari-
ous embodiments, the bit-rate for a connection may be prone
to spikes if the content/communication may be uneven. Thus,
in at least one of the various embodiments, a connection flow
once determined to be a good offload candidate (leading to
likely offloading to the DFS) may soon be determined to be a
poor offload candidate (leading to likely removal from the
DFS) depending on the immediate condition and/or charac-
teristics of the underlying communication session.

In at least one of the various embodiments, a connection
flow may repeatedly cycled back and forth from being
handled on the DFS to being handled on CS, or back again. In
at least one of the various embodiments, the cycling may
occur based on at least the variance of the operating charac-
teristics of the connection flow. In at least one of the various
embodiments, this at least enables the performance of the
connection flow and the usage of the DFS to be continually
optimized to take advantage of the variance in the connection
flow operation.

For example, in at least one of the various embodiments, as
the network traffic over the connection flow slows, the con-
nection flow may be moved to the CS for handling. Likewise,
in at least one of the various embodiments, as the network
traffic over the connection flow increases the connection flow
may be moved to the DFS for handling.

In at least one of the various embodiments, the cycling of
the connection flow between the CS and the DFS components
may occur one or more times during a communication ses-
sion. Also, in at least one of the various embodiments, the
cycling operations performed by the CS and the DFS com-
ponents may be seamless and unseen/opaque to both ends of
the communication session.

FIG. 10 shows a flowchart for at least one of the various
embodiments of process 1000 for identifying hot connection
flows. After a start block, at decision block 1002, in at least
one of the various embodiments, if the number of connection
flows being handled on the PTMD may less than the capacity
of the DFS control may be returned to the calling process.
Otherwise, in at least one of the various embodiments, control
may move to block 1004. In at least one of the various
embodiments, if the high speed flow cache on the DFS has
unused capacity both hot connection flows and “normal”
connection flows may be processed on the DFS.

Atblock 1004, in at least one of the various embodiments,
connection flows may be sorted in rank order based on the
amount of data traffic passed through, exchanged, or commu-
nicated through the connection flow in a given time interval.

In at least one of the various embodiments, well known
data structures and sorting algorithms may be employed to
generate a tabular data structure wherein the connection flows
may be logically order from based on amount of the data
traffic passing through the connection flow over a time inter-
val.

Atblock 1006, in at least one of the various embodiments,
hot flow candidates may be determined and identified based
on the top N flows based on the rank order.

In at least one of the various embodiments, the rules asso-
ciated with determining/defining hot connection flows may
include parameters such as “N” (e.g., how many of the top
connection flows may be designated as hot connection flows).
In atleast one of the various embodiments, “N” may be based
on a formula that may include additional parameters includ-
ing having different values based on the type of connection
flow.

10

15

20

25

30

35

40

45

50

60

65

22

Next, control may be returned to a calling process.

FIG. 11 shows a flowchart for at least one of the various
embodiments of process 1100 for identifying hot connection
flows. After a start block, at decision block 1102, in at least
one of the various embodiments, if the number of connection
flows being handled on the PTMD may be less than the
capacity of the DFS, control may be returned to the calling
process. Otherwise, in at least one of the various embodi-
ments, control may move to block 1104. In at least one of the
various embodiments, if the high speed flow cache on the
DFS has unused capacity both hot connection flows and “nor-
mal” connection flows may be processed on the DFS.

At block 1104, in at least one of the various embodiments,
the median bit-rate of connection flows being handled on the
CS may be determined for use in predicting a maximum
number of connection flows that may be processed by the CS.
Forexample, in atleast one of the various embodiments, if the
median bit-rate of connection flows currently being handled
on the CS may be 1 million bits per second and the total
bandwidth of the CS for handling connection flows may be
2000 million bits per second , the maximum number of con-
nection flows that may be processed may be estimated as
2000 connection flows (2000 million bits/sec/1 million bits/
sec).

At block 1106, in at least one of the various embodiments,
hot connection flow candidates may be identified based onthe
top N-tile of connection flows based on the maximum number
of flows the CS may be expected to handle. For example, in at
least one of the various embodiments, if a CS may be
expected to handle 2000 connection flows, the top 25% of
connection flows based on bit-rate (for a count of 500 flows)
may identified as hot connection flows. Next, in at least one of
the various embodiments, control may be returned to a calling
process.

It will be understood that figures, and combinations of
actions in the flowchart-like illustrations, can be implemented
by computer program instructions. These program instruc-
tions may be provided to a processor to produce a machine,
such that the instructions executing on the processor create a
means for implementing the actions specified in the flowchart
blocks. The computer program instructions may be executed
by a processor to cause a series of operational actions to be
performed by the processor to produce a computer imple-
mented process for implementing the actions specified in the
flowchart block or blocks. These program instructions may be
stored on some type of machine readable storage media, such
as processor readable non-transitive storage media, or the
like.

What is claimed is:

1. A method for managing communication over a network
with a traffic management device (TMD) that includes a
plurality of components and is operative to perform actions,
comprising:

employing at least one data flow segment (DFS) compo-

nent to provide packet level flow handling for a portion
of a plurality of connection flows;

employing at least one control segment (CS) component to

perform actions, including:

managing the plurality of connection flows and handling
a remainder portion of the plurality of connection
flows;

generating at least one connection flow metric based on
at least one received network packet for at least one of
the plurality of managed connection flows;

employing the at least one connection flow metric to
determine each hot connection flow in the plurality of
managed connection flows;

US 9,338,095 B2

23

determining each hot connection flow to be handled by
the DFS component wherein identifying each hot
connection flow is based at least on a predicted con-
nection flow capacity of the CS component, and
wherein a percentile of connection flows are identi-
fied as hot connection flows; and

employing the DFS component to handle each deter-
mined hot connection flow.

2. The method of claim 1, wherein employing the at least
one connection flow metric further comprises determining
each hot connection flow handled by the DFS component if
the plurality of managed connection flows exceeds a capacity
of the DFS component.

3. The method of claim 1, wherein employing the at least
one connection flow metric further comprises sorting the
plurality of managed connection flows based on at least a total
amount of data exchanged over a time interval.

4. The method of claim 1, wherein employing the at least
one connection flow metric further comprises:

determining a median bit-rate of data communicated for at

least one connection flow being handled by the CS com-
ponent; and

employing the median bit-rate of data communicated for at

least one connection flow and at least a bit-rate capacity
of'the CS component to estimate the maximum number
of connection flows the CS component can handle.

5. The method of claim 1, wherein determining each hot
connection flow to be handled by the DFS component further
comprises, identifying each hot connection flow to be
handled by the DFS component based at least on a total
amount of data communicated over a time interval, wherein N
number of connection flows having a top total amount of data
communicated over the time interval are identified as hot
connection flows.

6. The method of claim 1, wherein generating the at least
one connection flow metric further comprises, examining
contents of the at least one received network packet to identify
at least one of a data pattern, or a meta data which indicates
that the at least one of the plurality of connection flows is a hot
connection flow.

7. The method of claim 1, wherein the CS component
performs further actions, comprising:

dividing each connection flow into an upload portion and a

download portion;

generating separate connection flow metrics for each

upload portion and each download portion of each of the
plurality of managed connection flows;

employing each connection flow metric to determine each

hot download portion and each hot upload portion of the
plurality of managed connection flows;

determining each hot upload portion and each download

portion of the plurality of managed connection flows to
be handled by the DFS component; and

employing the DFS component to handle each determined

hot upload portion and each download portion of the
plurality of connection flows.

8. A traffic management device (TMD) that includes a
plurality of components for managing communication over a
network and is operative to perform actions, comprising:

atransceiver thatis operative to communicate data over the

network;

a memory that is operative to store instructions; and

a processor that is operative to execute instructions that
enable actions, including:

employing at least one data flow segment (DFS) com-
ponent to provide packet level flow handling for a
portion of a plurality of connection flows; and

10

15

20

25

30

35

40

45

50

55

60

65

24

employing at least one control segment (CS) component

to perform actions, comprising:

managing the plurality of connection flows and han-
dling a remainder portion of the plurality of con-
nection flows;

generating at least one connection flow metric based
on at least one received network packet for at least
one of the plurality of managed connection flows;

employing the at least one connection flow metric to
determine each hot connection flow in the plurality
of managed connection flows;

determining each hot connection flow to be handled
by the DFS component, wherein identifying each
hot connection flow is based at least on a predicted
connection flow capacity ofthe CS component, and
wherein a percentile of connection flows are iden-
tified as hot connection flows; and

employing the DFS component to handle each deter-
mined hot connection flow.

9. The TMD of claim 8, wherein employing the at least one
connection flow metric further comprises determining each
hot connection flow handled by the DFS component if the
plurality of managed connection flows exceeds a capacity of
the DFS component.

10. The TMD of claim 8, wherein employing the at least
one connection flow metric further comprises sorting the
plurality of managed connection flows based on at least a total
amount of data exchanged over a time interval.

11. The TMD of claim 8, wherein employing the at least
one connection flow metric further comprises:

determining a median bit-rate of data communicated for at

least one connection flow being handled by the CS com-
ponent; and

employing the median bit-rate of data communicated for at

least one connection flow and at least a bit-rate capacity
of the CS component to estimate the maximum number
of connection flows the CS component can handle.

12. The TMD of claim 8, wherein determining each hot
connection flow to be handled by the DFS component further
comprises, identifying each hot connection flow to be
handled by the DFS component based at least on a total
amount of data communicated over a time interval, wherein N
number of connection flows having a top total amount of data
communicated over the time interval are identified as hot
connection flows.

13. The TMD of claim 8, wherein generating the at least
one connection flow metric further comprises, examining
contents of the at least one received network packet to identify
at least one of a data pattern, or a meta data which indicates
that the at least one of the plurality of connection flows is a hot
connection flow.

14. The TMD of claim 8, wherein the CS component per-
forms further actions, comprising:

dividing each connection flow into an upload portion and a

download portion;

generating separate connection flow metrics for each

upload portion and each download portion of each of the
plurality of managed connection flows;

employing each connection flow metric to determine each

hot download portion and each hot upload portion of the
plurality of managed connection flows;

determining each hot upload portion and each download

portion of the plurality of managed connection flows to
be handled by the DFS component; and

employing the DFS component to handle each determined

hot upload portion and each download portion of the
plurality of connection flows.

US 9,338,095 B2

25

15. A processor readable non-transitory storage media that
is operative to store processor executable instructions for
managing communication over a network with a traffic man-
agement device (TMD) having a plurality of components,
wherein execution of the instructions by a processor enables
the TMD to perform actions, comprising:

employing at least one data flow segment (DFS) compo-

nent to provide packet level flow handling for a portion
of a plurality of connection flows;

employing at least one control segment (CS) component to

perform actions, including:

managing the plurality of connection flows and handling
a remainder portion of the plurality of connection
flows;

generating at least one connection flow metric based on
at least one received network packet for at least one of
the plurality of managed connection flows;

employing the at least one connection flow metric to
determine each hot connection flow in the plurality of
managed connection flows;

determining each hot connection flow to be handled by
the DFS component wherein identifying each hot
connection flow is based at least on a predicted con-
nection flow capacity of the CS component, and
wherein a percentile of connection flows are identi-
fied as hot connection flows; and

employing the DFS component to handle each deter-
mined hot connection flow.

16. The media of claim 15, wherein employing the at least
one connection flow metric further comprises determining
each hot connection flow handled by the DFS component if
the plurality of managed connection flows exceeds a capacity
of the DFS component.

17. The media of claim 15, wherein employing the at least
one connection flow metric further comprises sorting the
plurality of managed connection flows based on at least a total
amount of data exchanged over a time interval.

18. The media of claim 15, wherein employing the at least
one connection flow metric further comprises:

w

10

15

20

25

30

35

26

determining a median bit-rate of data communicated for at
least one connection flow being handled by the CS com-
ponent; and

employing the median bit-rate of data communicated for at

least one connection flow and at least a bit-rate capacity
of the CS component to estimate the maximum number
of connection flows the CS component can handle.

19. The media of claim 15, wherein determining each hot
connection flow to be handled by the DFS component further
comprises, identifying each hot connection flow to be
handled by the DFS component based at least on a total
amount of data communicated over a time interval, wherein N
number of connection flows having a top total amount of data
communicated over the time interval are identified as hot
connection flows.

20. The media of claim 15, wherein generating the at least
one connection flow metric further comprises, examining
contents of the at least one received network packet to identify
at least one of a data pattern, or a meta data which indicates
that the at least one of the plurality of connection flows is a hot
connection flow.

21. The media of claim 15, wherein the CS component
performs further actions, comprising:

dividing each connection flow into an upload portion and a

download portion;

generating separate connection flow metrics for each

upload portion and each download portion of each of the
plurality of managed connection flows;

employing each connection flow metric to determine each

hot download portion and each hot upload portion of the
plurality of managed connection flows;

determining each hot upload portion and each download

portion of the plurality of managed connection flows to
be handled by the DFS component; and

employing the DFS component to handle each determined

hot upload portion and each download portion of the
plurality of connection flows.

#* #* #* #* #*

